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Contrasting “geometric fitting”, for which the noise level is taken as the asymptotic variable,
with “statistical inference”, for which the number of observations is taken as the asymptotic
variable, we give a new definition of the “geometric AIC” and the “geometric MDL” as
the counterparts of Akaike’s AIC and Rissanen’s MDL. We discuss various theoretical and
practical problems that emerge from our analysis. Finally, we show, doing experiments
using synthetic and real images, that the geometric MDL does not necessarily outperform
the geometric AIC and that the two criteria have very different characteristics.

1. INTRODUCTION

The problem of inferring the geometric structure of the scene from noisy data is one of the central themes of

computer vision. This problem has been generalized in abstract terms as geometric fitting , for which a general

theory of statistical optimization has been developed [8, 9]. Also, the geometric AIC has been proposed for model

selection [8, 11, 13] and applied to many problems [10, 14, 15, 18, 19, 22, 26, 38]. Similar but different criteria have

also been proposed [33, 34, 35, 36, 37].

The geometric AIC was motivated by Akaike’s AIC (Akaike information criterion) [1]. Naturally, interests

arose about using Rissanen’s MDL (minimum description length) [28, 29], since it is regarded by many as superior

to Akaike’s AIC for statistical inference. It is anticipated that a criterion like Rissanen’s MDL would outperform

the geometric AIC for geometric fitting, too. This anticipation has also been one of the main criticisms to the

geometric AIC.

In the past, Rissanen’s MDL often appeared in the literature of computer vision, but the use was limited to such

applications that have the form of standard statistical inference such as linear/nonlinear regression [3, 25]. Also,

many MDL-like criteria were introduced, but often the solution having a shorter description length was simply

chosen with an arbitrary definition of the complexity [7, 21, 24].

The main contributions of this paper are as follows:

1. We give a new definition of the geometric AIC and show that the final form agrees with the already proposed

form. This new definition clarifies the ambiguities that existed in the original derivation [8, 11, 13]. At the

same time, this definition refutes the existing misunderstanding that the geometric AIC and Akaike’s AIC

are the same thing (even Kanatani [8, 11, 13] was ambivalent in this respect). It also makes clear that the

geometric AIC is fundamentally different from other similarly proposed criteria [33, 34, 35, 36, 37] in the

treatment of the asymptotic variable.
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2. We give a new definition of the geometric MDL using the logic introduced by Rissanen [28, 29, 30]. The final

form is slightly different from the already proposed form [22]. Again, this new definition makes it clear how

the geometric MDL is different from Rissanen’s MDL and how it fundamentally differs from other similarly

proposed criteria [3, 24, 25, 33]. It also reveals some problems that have been overlooked so far.

3. We experimentally test, using synthetic and real images, if the geometric MDL really outperforms the ge-

ometric AIC as anticipated. Our conclusion is negative. We also show that these two criteria have very

different characteristics.

The basic principle behind our approach is that we take the noise level as what we call the asymptotic variable

and define geometric model selection that corresponds to stochastic model selection, where the number of observa-

tions is taken as the asymptotic variable. In this sense these two formalisms are dual to each other, and in this

light the geometric MDL is “dual” to Rissanen’s MDL. The similarity between the geometric AIC and Akaike’s

AIC can be viewed as “self-duality”.

There have been heated arguments among statisticians and information theorists for and against Akaike’s AIC,

Rissanen’s MLD, and the philosophies behind them. Also, many similar criteria purported to be better than them

have been proposed. In this paper, we neither endorse either of Akaike’s AIC and Rissanen’s MLD nor justify

their derivations and philosophies behind them. We regard them simply as they are and focus only on the question

of how they should be redefined in the framework of geometric fitting .

We do not consider other similar criteria for statistical inference, either. Once the relationship between geometric

fitting and statistical inference is established, it is not difficult to define the geometric-fitting versions of such criteria.

The usefulness of the resulting criteria as compared with the geometric AIC and the geometric MDL is yet to be

studied, and this paper lays a foundation for it.

In Sec. 2, we formulate geometric fitting as constraint satisfaction of geometric data in the presence of noise,

taking the noise level as the asymptotic variable. In Sec. 3 and 4, we define the geometric AIC and the geometric

MDL as counterparts of Akaike’s AIC and Rissanen’s MDL. We also discuss various theoretical and practical

problems that emerge from our analysis. In Sec. 6, we do synthetic and real image experiments to see if the

geometric MDL really outperforms the geometric AIC. In Sec. 7, our conclusion is given.

2. DEFINITIONS

We first formalize geometric fitting and geometric model selection. This formulation will play a crucial role in

deriving the geometric AIC and the geometric MDL in the subsequent sections.

2.1 Geometric Fitting

Given N data x1, ..., xN , which are m-dimensional vectors, we view each xα as perturbed from its true value x̄α by

Gaussian noise of mean 0 and covariance matrix V [xα] independently. The true values x̄α are supposed to satisfy

r constraint equations

F (k)(x̄α, u) = 0, k = 1, ..., r, (1)

parameterized by a p-dimensional vector u. We call the domain X of the data {xα} the data space, and the

domain U of the vector u the parameter space. The number r of the constraint equations is called the rank of

the constraint. The r equations F (k)(x,u) = 0, k = 1, ..., r, are assumed to be mutually independent, defining a

manifold S of codimension r parameterized by u in the data space X . Eq. (1) requires that the true values {x̄α}
be all in the manifold S. Our task is to estimate the parameter u from the noisy data {xα}.

This problem can be extended to the case where the data {xα} are constrained to be in a manifold in the data

space X and the parameter u is constrained to be in a manifold in the parameter space U , enabling us to deal with

the situation where xα and u are, say, normalized to unit vectors. Also, the r equations F (k)(x,u) = 0, k = 1, ...,
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r, need not be mutually independent. The subsequent argument still holds if (Moore-Penrose) generalized inverses

and projection operations are introduced (see [8] for the details).

We write the covariance matrix V [xα] in the form

V [xα] = ε2V0[xα], (2)

and call the constant ε the noise level and the matrix V0[xα] the normalized covariance matrix . One reason for

this separation is that the absolute magnitude of noise is unknown in many practical problems while its qualitative

characteristics can be relatively easily estimated or determined from the gray levels of the input images [20].

Another reason is that the maximum likelihood solution is not affected in geometric fitting if the covariance

matrix is multiplied by a positive constant. Hence, it suffices to know only the normalized covariance matrix

V0[xα]. In fact, the geometric fitting problem as defined above can be solved by minimizing the sum of the square

Mahalanobis distances

J =
N∑

α=1

(xα − x̄α, V0[xα]−1(xα − x̄α)) (3)

subject to the constraint (1), where and hereafter we denote the inner product of vectors a and b by (a, b).

If we assume that the noise is small, we can eliminate the constraint (1), using first order approximation and

introducing Lagrange multipliers, in the following form [8]:

J =
N∑

α=1

r∑

k,l=1

W (kl)
α F (k)(xα, u)F (l)(xα, u). (4)

Here, W (kl)
α is the (kl) element of the inverse of the r × r matrix whose (kl) element is (∇xF

(k)
α , V [xα]∇xF

(l)
α ),

where the subscript α in ∇xF
(k)
α means x = xα is substituted.

2.2 Asymptotic Variables

It can be shown that the covariance matrix V [û] of the maximum likelihood solution û that minimizes eq. (4) not

only converges to O as ε → 0 but also satisfies the theoretical accuracy bound within terms of O(ε4) [8, 9].

This corresponds to the fact that in statistical inference the covariance matrix of the maximum likelihood

solution not only converges to O as the number n of observations goes to infinity (consistency) but also satisfies

the Cramer-Rao lower bound within terms of O(1/n2) (asymptotic efficiency).

In general, a complicated problem for which exact analysis is difficult often has a simple form that elucidates

the underlying mathematical structure if some variable is very large or very small. Let us tentatively call such a

variable an asymptotic variable.

In statistical inference, the number n of observations is usually taken as the asymptotic variable. This reflects

the fundamental paradigm of statistical inference that the truth that underlies apparent random phenomena can

be uncovered by repeated observations. It follows that an estimation method whose performance improves rapidly

as n →∞ is desirable, since such a method requires a smaller number of observations to reach acceptable accuracy.

In geometric fitting, we take the noise level ε as the asymptotic variable. This reflects the requirement that a

desirable estimation method should improve its performance rapidly as ε → 0, since such a method can tolerate a

higher noise level to maintain acceptable accuracy [8, 12].

It is thus anticipated that all the properties of statistical inference in the limit n → ∞ of a large number of

observations hold in geometric fitting in the limit ε → 0 of an infinitesimal noise. Indeed, this can be justified by

the following thought experiment. Suppose we observe an image many times. In reality, the result is always the

same as long as the image and image processing algorithms involved are the same. It is, therefore, impossible to

observe a different occurrence of the “noise”, by which we mean the inaccuracy due to the limited resolution and

imperfection of the processing algorithms. In this sense, the number n of observations is always 1. However, if we
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hypothetically imagine that noise occurrence changes independently each time we observe the same image. Then,

we could obtain more accurate data by taking the average of the n observations. This means that increasing the

number n of hypothetical observations is equivalent to effectively reducing the noise level ε [12].

2.3 Models and Model Selection

The goal of statistical inference is to explain the data-generating mechanism of apparent random phenomena.

Hence, an observation x is expressed as a composite of deterministic and random parts. In abstract terms, the

problem is to estimate from a given sequence of data {xi} the parameter θ of the density P (x|θ) according to

which the data {xi} are assumed to have been sampled. The parameter θ consists of the deterministic part (e.g.,

the coefficients of the equation that generates the data in the absence of noise) and the random part (e.g., noise

characteristics such as means and variances). If we hypothesize for the density multiple possibilities P1(x|θ1),

P2(x|θ2), ..., each is called a (stochastic) model ; the task of choosing an appropriate one is (stochastic) model

selection.

In contrast, the goal of geometric fitting is to estimate the parameter u of the constraint F (x,u) = 0 that

the data {xα} are supposed to satisfy. The parameter u is purely of geometric nature; it does not contain any

characteristics of random noise. If we hypothesize for the constraint multiple possibilities F 1(x,u1) = 0, F 2(x, u2)

= 0, ..., each is called a (geometric) model ; the task of choosing an appropriate one is (geometric) model selection

[8, 12].

In geometric fitting, the characteristics of the noise are assumed a priori, independently of the constraint (i.e.,

the model). In particular, the noise level ε is a characteristic of the image and image processing algorithms involved,

independent of our interpretation of the image.

3. GEOMETRIC AIC

The derivation of Akaike’s AIC [1], which is tuned to statistical inference, is tailored to geometric fitting as follows.

3.1 Goodness of a Model

Under the model (1), the data can be regarded as one sample from the following density (we use uppercases for

random variables and lowercases for their instances; | · | denotes the determinant):

P ({Xα}) =
N∏

α=1

e−(Xα−x̄α,V [xα]−1(Xα−x̄α))/2

√
(2π)m|V [xα]|

. (5)

The true values {x̄α} are constrained by eq. (1). The measure of the goodness of this model adopted by Akaike is

the Kullback-Leibler distance (or divergence) from this density to the true density PT ({Xα})

D =
∫
· · ·

∫
PT ({Xα}) log

PT ({Xα})
P ({Xα}) dX1 · · · dXN = E[log PT ({Xα})]− E[log P ({Xα})], (6)

where E[ · ] denotes expectation with respect to the true density PT ({Xα}). The assumed model is regarded as

good if D is small. The first term on the last right-hand side does not depend on individual models, so we regard

the model as good if

−E[log P ({Xα})] =
1

2ε2
E[

N∑

α=1

(Xα − x̄α, V0[xα]−1(Xα − x̄α))] +
mN

2
log 2πε2 +

1

2

N∑

α=1

log |V0[xα]| (7)

is small, where we have substituted eq. (2). The last two terms do not depend on individual models. So, multiplying

the first term by 2ε2, we seek a model that minimizes the expected residual

E = E[
N∑

α=1

(Xα − x̄α, V0[xα]−1(Xα − x̄α))]. (8)
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This is the well known least-squares criterion under Gaussian noise. Note that ε is not a model parameter and

hence multiplication of positive quantity that depends only on ε does not affect model selection.

3.2 Evaluation of Expectation

The difficulty of using eq. (8) as a model selection criterion is that the expectation E[ · ] must be evaluated with

respect to the true density, which we do not know. How to deal with this will lead to the fundamental difference

between geometric fitting and statistical inference.

In statistical inference, we can assume that we could, at least in principle, observe as many data as desired.

If we are allowed to sample independent instances x1, x2, ..., xn according to a density PT (X), the expectation
∫

Y (X)PT (X)dX of a statistic Y (X) can be approximated by (1/n)
∑n

i=1 Y (xi) (the Monte-Carlo method), which

converges to the true expectation in the limit n → ∞ (the law of large numbers). Akaike’s AIC is based on this

principle.

In geometric fitting, in contrast, we can obtain only one instance {xα} of {Xα}, so it is impossible to replace

expectation by sample average. But we can assume that we could, at least in principle, use devices of as high

resolution as desired. In our framework, therefore, it suffices to find an approximation that holds in the limit

ε → 0. Evidently, the expectation
∫ · · · ∫ Y ({Xα})PT ({Xα})dX1 · · · dXN of Y ({Xα}) can be approximated by

Y ({xα}) (note that we do not need 1/N), because as ε → 0 we have PT ({Xα}) → ∏N
α=1 δ(Xα − x̄α), where δ( · )

denotes the Dirac delta function. Thus,
∫ · · · ∫ Y ({Xα})PT ({Xα})dX1 · · · dXN and Y ({xα}) both converge to

Y ({x̄α}).
It follows that we can approximate E by

J =
N∑

α=1

(xα − x̄α, V0[xα]−1(xα − x̄α)). (9)

3.3 Bias Removal

There is still a difficulty using eq. (9) as a criterion: the model parameters {x̄α} and u need to be estimated. If we

are to view eq. (9) as a measure of the goodness of the model, we should choose for {x̄α} and u their maximum

likelihood estimators {x̂α} and û that minimize eq. (9) subject to the constraint (1). A naive idea is to substitute

{x̂α} and û for {x̄α} and u in eq. (9) and use as a model selection criterion

Ĵ =
N∑

α=1

(xα − x̂α, V0[xα]−1(xα − x̂α)), (10)

which is called the residual (sum of squares). However, a logical inconsistency arises.

Eq. (1) does not define a particular model. Rather, it defines a class of models parameterized by {x̄α} and u.

If we choose particular values {x̂α} and û, we are given a particular model. According to the logic in Sec. 3.1, its

goodness should be evaluated by E[
∑N

α=1(Xα − x̂α, V0[xα]−1(Xα − x̂α))]. According to the logic in Sec. 3.2, the

expectation can be approximated using a typical instance of {Xα}.
However, {x̂α} and û were computed from {xα}, so {xα} cannot be a typical instance of {Xα} due to the

correlation with the assumed model. In fact, Ĵ is generally smaller than E[
∑N

α=1(Xα − x̂α, V0[xα]−1(Xα − x̂α))],

because {x̂α} and û were determined so as to minimize Ĵ .

This is the difficulty that Akaike encountered in the derivation of his AIC. His strategy for resolving this can

be translated in our setting as follows.

Ideally, we should approximate the expectation using an instance {x∗α} of {Xα} generated independently of the

current data {xα}. In other words, we should evaluate

J∗ =
N∑

α=1

(x∗α − x̂α, V0[xα]−1(x∗α − x̂α)). (11)
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Let us call {x∗α} the future data; they are “another” instance of {Xα} that might occur if we did a hypothetical

experiment. In reality, however, we have the current data {xα} alone at hand1. So, we try to compensate for the

bias in the form

Ĵ∗ = Ĵ + bε2. (12)

It is easily seen that Ĵ∗ and Ĵ are both O(ε2) and hence b is O(1). Since Ĵ∗ and Ĵ are random variables, so is b.

It can be proved [8, 11] that

E∗[E[b]] = 2(Nd + p) + O(ε2), (13)

where E[ · ] and E∗[ · ] denote expectations with respect to {xα} and {x∗α}, respectively. From this, we obtain an

unbiased estimator of Ĵ∗ in the first order in the form

G-AIC = Ĵ + 2(Nd + p)ε2, (14)

where d = m− r is the dimension of the manifold S defined in the data space X by the constraint F (k)(x, u) = 0,

k = 1, ..., r. This criterion is the geometric AIC proposed by Kanatani [8, 11, 13].

3.4 Duality of Asymptotic Analysis

Although the final form is the same, Kanatani’s original derivation starting from eq. (11) with a heuristic reasoning

[8, 11, 13]. This has caused a lot of confusion as to whether the geometric AIC and Akaike’s AIC are the same or

not. The present formulation makes clear where they are the same and from where they depart.

In Akaike’s derivation, the following facts play a fundamental role:

• The maximum likelihood estimator converges to its true value as n → ∞ (the law of large numbers).

• The maximum likelihood estimator asymptotically obeys a Gaussian distribution as n →∞ (the central limit

theorem).

• A quadratic form in standardized Gaussian random variables is subject to a χ2 distribution, whose expectation

equals its degree of freedom.

In the derivation of eq. (13), the following facts play a crucial role [8, 11]:

• The maximum likelihood estimator converges to its true value as ε → 0.

• The maximum likelihood estimator obeys a Gaussian distribution under linear constraints, because the noise is

assumed to be Gaussian. For nonlinear constraints, linear approximation can be justified in the neighborhood

of the solution if ε is sufficiently small .

• A quadratic form in standardized Gaussian random variables is subject to a χ2 distribution, whose expectation

equals its degree of freedom.

We observe a kind of “duality” between geometric fitting and statistical inference. In particular, we see that

the noise level ε in geometric fitting plays the same role as the number n of observations in statistical inference.

This is obvious if we recall the thought experiment in Sec. 2.2: reducing the noise is equivalent to increasing the

number of hypothetical observations.

The confusion about the relationship between the geometric AIC and Akaike’s AIC originates from the apparent

similarity of their forms, which is due to the fact that the correction term in Akaike’s AIC is independent of the

number n of observations. If n were involved, the corresponding form for geometric fitting would have a very

different form, as we will show subsequently. In this sense, the similarity, or “self-duality”, between the geometric

AIC and Akaike’s AIC is a mere accident, which has hidden the difference underneath geometric fitting and

statistical inference.

1If such data {x∗α} actually exist, the test using them is called cross-validation. We can also generate equivalent data by a computer.
Such a simulations is called bootstrap [5].
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4. GEOMETRIC MDL

We now derive in our framework the counterpart of Rissanen’s MDL (minimum description length) [28, 29, 30].

4.1 MDL Principle

Rissanen’s MDL measures the goodness of the model by the information theoretic code length. The basic idea is

simple, but the following difficulties must be resolved for applying it in practice:

• Encoding a problem involving real numbers requires an infinitely long code length.

• The probability density, from which a minimum length code can be obtained, involves unknown parameters.

• Obtaining an exact form of the minimum length code is very difficult.

Rissanen [28, 29] avoided these difficulties by quantizing the real numbers in a way that does not depend on

individual models and substituting the maximum likelihood estimators for the parameters. They, too, are real

numbers, so they are also quantized. The quantization width is chosen so as to minimize the total description

length (the two-stage encoding). The resulting code length is asymptotically evaluated by taking the data length

n as the asymptotic variable. This idea of Rissanen can be translated into our framework as follows.

If the data {xα} are sampled according to the probability density (5), they can be encoded, after their domain

is quantized, in a shortest prefix code of length

− log P =
J

2ε2
+

mN

2
log 2πε2 +

1

2

N∑

α=1

log |V0[xα]|, (15)

up to a constant that depends only on the domain and the width of the quantization. Here, J is the sum of the

square Mahalanobis distances given by eq. (3). Using the natural logarithm, we take log2 e bits as the unit of

length.

4.2 Two-Stage Encoding

In order to do encoding using eq. (5), we need the true values {x̄α} and the parameter u. Since they are unknown,

we use their maximum likelihood estimators that minimize eq. (15) (specifically J). The last two terms of eq. (15)

do not depend on individual (geometric) models (recall that ε is not a model parameter), so the minimum code

length is Ĵ/2ε2 up to a constant that does not depend on individual models, where Ĵ is the residual given by

eq. (10). For brevity, we hereafter call the code length determined up to a constant that does not depend on

individual models simply the description length.

Since the maximum likelihood estimators {x̂α} and û are real numbers, they must also be quantized. If we use

a large quantization width, their code lengths become short, but the description length Ĵ/2ε2 will increase. So, we

take the width that minimizes the total description length. The computation is based on the fact that eq. (4) can

be written as follows [8]:

J = Ĵ +
N∑

α=1

(xα − x̂α, V0[x̂α]−(xα − x̂α)) + (u− û, V0[û]−1(u− û)) + O(ε3). (16)

Here, the superscript − denotes the (Moore-Penrose) generalized inverse, and V0[x̂α] and V0[ûα] are, respectively,

the a posteriori covariance matrices of the maximum likelihood estimators x̂α and û given as follows [8]:

V0[x̂α] = V0[xα]−
r∑

k,l=1

W (kl)
α (V [xα]∇xF

(k)
α )(V [xα]∇xF

(k)
α )>,

V0[û] =
( N∑

α=1

r∑

k,l=1

W (kl)
α (∇uF (k)

α )(∇uF (l)
α )>

)−1
. (17)

The symbol W (kl)
α has the same meaning as in eq. (4).
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4.3 Encoding Parameters

In order to quantize û, we quantize the p-dimensional parameter space U by introducing appropriate (generally

curvilinear) coordinates and defining a grid of width δui. Suppose û is in a rectangular region of size Li. There

are
∏p

i=1(Li/δui) grid vertices inside, so specifying one from these requires the code length

log
p∏

i=1

Li

δui

= log Vu −
p∑

i=1

log δui, (18)

where Vu =
∏p

i=1 Li is the volume of the rectangular region. We could reduce this code length using a large width

δui, but eq. (16) implies that replacing û by the nearest vertex would increase the description length Ĵ/2ε2 by

(δu, V0[û]−1δu)/2ε2 in the first order in ε, where we define δu = (δui). Differentiating the sum of this and eq. (18)

with respect to δui and letting the result be 0, we obtain

1

ε2

(
V0[û]−1δu

)
i
=

1

δui

, (19)

where ( · )i designates the ith component. If the coordinate system of U is taken in such a way that V0[û]−1 is

diagonalized, we obtain

δui =
ε√
λi

, (20)

where λi is the ith eigenvalue of V0[û]−1. It follows that the volume of one cell of the grid is

vu =
p∏

i=1

δui =
εp

√
|V0[û]−1|

. (21)

Hence, the number of cells inside the region Vu is

Nu =
∫

Vu

du

vu

=
1

εp

∫

Vu

√
|V0[û]−1|du. (22)

Specifying one from these requires the code length

log Nu = log
∫

Vu

√
|V0[û]−1|du− p

2
log ε2. (23)

4.4 Encoding True Values

In order to quantize {x̂α}, we need to quantize their domain. Although the domain of the data {xα} is the m-

dimensional data space X , their true values are constrained to be in a d-dimensional manifold Ŝ parameterized

by û, which we have already encoded. So, we introduce appropriate curvilinear coordinates in Ŝ and define a

(curvilinear) grid of width δξiα. Since each x̂α has its own normalized covariance matrix V0[x̂α] (see eqs. (17)), we

quantize each x̂α differently, using different curvilinear coordinates for each.

Suppose x̂α is in a (curvilinear) rectangular region of size liα. There are
∏d

i=1(liα/δξiα) grid vertices inside, so

specifying one from these requires the code length

d∑

i=1

log
liα
δξiα

= log Vxα −
d∑

i=1

log δξiα, (24)

where Vxα =
∏d

i=1 liα is the volume of the rectangular region. We could reduce this code length using a large

width δξiα, but replacing x̂α by its nearest vertex would increase the description length Ĵ/2ε2. Let δx̄α be the

m-dimensional vector that expresses the displacement {δξiα} on Ŝ with respect to the coordinate system of X .

Eq. (16) implies that the increase in Ĵ/2ε2 is (δx̄α, V0[x̂α]−δx̄α)/2ε2 in the first order in ε. Differentiating the sum

of this and eq. (24) with respect to δξiα and letting the result be 0, we obtain

1

ε2

(
V0[x̂α]−δx̄α

)
i
=

1

δξiα

. (25)
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Note that V0[x̂α]− is a singular matrix of rank d whose domain is the tangent space to Ŝ at x̂α. We define the

curvilinear coordinates in Ŝ in such a way that the p basis vectors at x̂α form an orthonormal system. Suppose the

coordinate system of X is defined in such a way that its basis vectors consist of the p basis vectors of Ŝ at x̂α plus

an orthonormal system of m − p vectors orthogonal to them. If, moreover, we choose the curvilinear coordinates

of Ŝ in such a way that V0[x̂α]− is diagonalized, we obtain the solution δξiα of eq. (25) in the form

δξiα =

{
ε/
√

λiα i = 1, ..., d
0 i = d + 1, ..., m

, (26)

where λ1α, ..., λdα are the d positive eigenvalues of V0[x̂α]−. It follows that the volume of one cell of the grid is

vxα =
d∏

i=1

δξiα =
εd

√
|V0[x̂α]−|d

, (27)

where |V0[x̂α]−|d denotes the product of its d positive eigenvalues. Hence, the number of cells inside the region Vxα

is

Nα =
∫

Vxα

dx

vxα

=
1

εd

∫

Vxα

√
|V0[x̂α]−|d dx. (28)

Specifying one from these requires the code length

log Nα = log
∫

Vxα

√
|V0[x̂α]−|d dx− d

2
log ε2. (29)

4.5 Geometric MDL

From eqs. (23) and (29), the total code length for {x̂α} and û becomes

N∑

α=1

log
∫

Vxα

√
|V0[x̂α]−|d dx + log

∫

Vu

√
|V0[û]−1|du.− Nd + p

2
log ε2 (30)

The resulting increase in the description length Ĵ/2ε2 is (δx̄α, V0[x̂α]−δx̄α)/2ε2 + (δu, V0[û]−1δu)/2ε2 in the first

order in ε. If we substitute eqs. (20) and (26) together with V0[x̂α]− = diag(1/λ1α, ..., 1/λdα, 0, ..., 0) and V0[û]−1

= diag(1/λ1, ..., 1/λp), this increase in the description length is

(δx̄α, V0[x̂α]−δx̄α)

2ε2
+

(δu, V0[û]−1δu)

2ε2
=

Nd + p

2
(31)

if higher order terms in ε are omitted. Since eqs. (20) and (26) are obtained by omitting terms of o(ε), the omitted

terms in eq. (31) are o(1). It follows that the total description length is

Ĵ

2ε2
− Nd + p

2
log ε2 +

N∑

α=1

log
∫

Vxα

√
|V0[x̂α]−|d dx + log

∫

Vu

√
|V0[û]−1|du +

Nd + p

2
+ o(1). (32)

Since ε is not a model parameter, multiplication by a positive quantity that depends only on ε does not affect

model selection. So, we multiply the above expression by 2ε2 and write

G-MDL = Ĵ − (Nd + p)ε2 log ε2 + 2ε2
( N∑

α=1

log
∫

Vxα

√
|V0[x̂α]−|d dx + log

∫

Vu

√
|V0[û]−1|du

)

+(Nd + p)ε2 + o(ε2), (33)

which we call the geometric MDL.

4.6 Scale Choice

In practice, it is difficult to use eq. (33) as a criterion because of the difficulty in evaluating the third term on the

right-hand side. First, the matrices V0[x̂α] and V0[û] given by eqs. (17) have complicated forms, so it is difficult to

integrate them. But a more serious problem is that the regions Vxα and Vu must be finite so that the integrations
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exist. If the data space X and the parameter space U are unbounded, we must specify in them finite regions in which

the true values are likely to exist. This is nothing but the Bayesian standpoint that requires prior distributions for

parameters to be estimated.

After all, reducing model selection to code length requires the Bayesian standpoint, because if the parameters

can be anywhere in unbounded regions, it is impossible to obtain a code of finite length unless some information

about their likely locations is given. An expedient for this is to omit diverging quantities and higher order terms as

long as they do not affect the model selection very much, so that the final form is independent of prior distributions.

If we note that − log ε2 À 1 as ε → 0, we may omit terms of O(ε2) in eq. (33). Then, we obtain

G-MDL = Ĵ − (Nd + p)ε2 log ε2. (34)

This is the form proposed by Matsunaga and Kanatani [22] by a heuristic reasoning. One need not worry about

integration in this form, but instead the problem of scale arises. If we multiply the unit of length by, say, 10,

both ε2 and Ĵ are multiplied by 1/100. Since N , d, and p are nondimensional constants, G-MDL should also be

multiplied by 1/100. But log ε2 reduces by log 100, meaning that model selection could be affected by the unit of

length we use. In eq. (33), in contrast, the influence of scale is canceled between the second and third terms on

the right-hand side.

The inconsistency in eq. (34) comes from the term log ε2. Since the logarithm can be defined only for a

nondimensional quantity, eq. (34) should have the form

G-MDL = Ĵ − (Nd + p)ε2 log
( ε

L

)2
, (35)

where L is a reference length. In theory, it can be determined from the third term on the right-hand side of eq. (33),

but its evaluation is difficult. So, we adopt a practical compromise, choosing a scale L such that xα/L is O(1).

This can be roughly interpreted as giving a prior distribution in a region of volume Lm in the data space X . For

example, if {xα} are image pixel data, we can take L to be the image size.

Since we are assuming that the noise is much smaller than the data, we have − log(ε/L)2 À 1. Hence, if we

use a different scale L′ = γL, we have log γ2 ≈ 0 as long as γ ≈ 1. Hence, − log(ε/L′)2 = − log(ε/L)2 + log γ2

≈ − log(ε/L)2, so the model selection is not affected very much as long as we use the scale of the same order of

magnitude.

Nevertheless, the need of such a reference length is certainly a handicap as compared with the geometric AIC.

However, this is unavoidable, because it originates from the very MDL principle of Rissanen, as we now argue.

4.7 MDL in Statistical Inference

The difficulties and expedients described above may appear to be peculiar to the geometric MDL and may cast

doubt on its legitimacy. In truth, however, the same situation arises for Rissanen’s MDL, for which the data length

n is the asymptotic variable. Originally, Rissanen presented his MDL in the following form [28]:

MDL = − log
n∏

α=1

P (xα|θ̂) +
k

2
log n + O(1). (36)

Here, the data {xα} are assumed to be sampled independently from a (stochastic) model (i.e., the probability

density) P (x|θ) parameterized by a k-dimensional vector θ; θ̂ is its maximum likelihood estimator. The symbol

O(1) denotes terms of order 0 in the limit n → ∞. The geometric MDL (34) of Matsunaga and Kanatani [22] was

inspired by this form.

This form evokes the problem of the unit of the data {xα}. If we regard a pair of data as “one” datum, viewing

(x1,x2), (x3,x4), ... as sampled from P (x,y|θ) = P (x|θ)P (y|θ), the data length is apparently halved though the

problem is the same. As a result, the second term on the right-hand side of eq. (36) reduces by (k/2) log 2, and
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this could affect the model selection. Rissanen’s MDL was criticized for this defect (and others). Later, Rissanen

presented the following form [30]:

MDL = − log
n∏

α=1

P (xα|θ̂) +
k

2
log

n

2π
+ log

∫

Vθ

√
|I(θ)|dθ + o(1). (37)

Here, I(θ) is the Fisher information matrix of P (xα|θ). In this form, the effect of scale change is canceled by the

corresponding change in the Fisher information matrix. However, the problem of integration arises if the domain

Vθ of the parameter θ is unbounded, just as in the case of eq. (33), so an appropriate expedient such as assuming

a prior distribution becomes necessary. This has been criticized by some as a handicap over Akaike’s AIC while

welcomed by others as giving extra freedoms to adjust.

Thus, the geometric MDL and Rissanen’s MDL share the same problem whether the asymptotic variable is the

noise level ε or the data length n; the properties of the one are faithfully mirrored in the other. This is obvious if

we recall that ε is effectively related to the number n of hypothetical observations (Sec. 2.2).

5. NOISE LEVEL ESTIMATION

In order to use the geometric AIC or the geometric MDL, we need to know the noise level ε. If it is not known,

it must be estimated. Since ε is a constant predetermined by the image and the image processing algorithms

independently of our interpretation, it must be estimated independently of individual models.

If we know the true model, it can be estimated from the residual Ĵ using the knowledge that Ĵ/ε2 is subject

to a χ2 distribution with rN − p degrees of freedom in the first order [8]. This can be intuitively understood as

follows. Recall that Ĵ can be viewed as the sum of square distances from {xα} to the manifold Ŝ defined by the

constraint F (k)(x,u) = 0, k = 1, ..., r, in the data space X . Since Ŝ has codimension r (the dimension of the

orthogonal directions to it), the residual Ĵ should have expectation rNε2. However, Ŝ is fitted so as to minimize

Ĵ by adjusting its p-dimensional parameter u, so the expectation of Ĵ reduces to (rN − p)ε2. Thus, we obtain an

unbiased estimator of ε2 in the form

ε̂2 =
Ĵ

rN − p
. (38)

The validity of this formula has been confirmed by many simulations.

One may wonder if model selection is necessary at all when the true model is known. In practice, however, the

situation that requires model selection most is degeneracy detection. In 3-D analysis from images, for instance, the

constraint (1) corresponds to our knowledge about the scene such as rigidity of motion. However, the computation

fails if degeneracy occurs (e.g., the motion is zero). Even if exact degeneracy does not occur, the computation

may become numerically unstable when the condition nearly degenerates. In such a case, the computation can

be stabilized by detecting degeneracy by model selection and switching to a specific model that describes the

degeneracy [12, 18, 19, 22, 26, 38].

Degeneracy means addition of new constraints, such as some quantity being zero. As a result, the manifold S
defined by the general constraint degenerates into a submanifold S ′ of it. Since the general model holds irrespective

of degeneracy (i.e., S ′ ⊂ S), we can estimate the noise level ε̂ from the residual Ĵ of the general model S by eq. (38).

In statistical inference, on the other hand, the noise variance is a model parameter, because by “noise” we

mean the random effects that account for the discrepancy between the assumed model and the actual observation.

Hence, the noise variance must be estimated, if it is not known, according to the assumed model. This is one of

the most different aspects between statistical inference and geometric fitting.

6. IS THE GEOMETRIC MDL REALLY BETTER?

We experimentally test, using synthetic and real images, if the geometric MDL really outperforms the geometric AIC

as anticipated. Our conclusion is negative. We also show that these two criteria have very different characteristics.
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Figure 1: The ratio (%) of estimating the rank to be 5 by the geometric AIC (solid line) and the geometric MDL (dashed
line) using (a) the true noise level and (b) the estimated noise level.

6.1 Rank Estimation

Given a sequence of images of points from multiple objects independently moving in the scene, we can estimate the

number of objects by computing the rank of a matrix consisting of the image coordinates of these points if there is

no image noise [4, 14, 15]. In the presence of noise, we can estimate the rank by truncating smaller singular values,

but it is difficult to set an appropriate threshold.

The rank r of an n ×m matrix is the dimension of the subspace spanned by its m columns in Rn, or of the

subspace spanned by its n rows in Rm. In the presence of image noise, each matrix element undergoes Gaussian

noise of mean 0 and a constant variance ε2 [14, 15]. The degree of freedom of an r-dimensional subspace in Rn is2

r(n− r). Hence, the geometric AIC and the geometric MDL are respectively given by

G-AIC = Ĵr + 2r(m + n− r)ε2, G-MDL = Ĵr − r(m + n− r)ε2 log
( ε

L

)2
. (39)

The same form is obtained if we calculate the degree of freedom of an r-dimensional subspace in Rm. In other

words, the expressions are symmetric with respect to n and m, as they should be.

Let ν = min(n,m). The residual Ĵr is given by

Ĵr =
ν∑

i=r+1

σ2
i , (40)

where {σi} are the singular values, in descending order, of the matrix. Evaluating eqs. (39) for r = 1, 2, ..., we

choose the value r that minimizes them.

If the noise variance ε2 is not known, we need to estimate it. It can be estimated if the rank r is known to be

less than an upper bound rmax. From (38), we obtain

ε̂2 =
Ĵrmax

(n− rmax)(N − rmax)
. (41)

We defined a 10× 20 matrix whose elements were randomly generated uniformly over [−1, 1]. We computed its

singular value decomposition in the form V diag(σ1, ..., σ10)U
>, the singular values σ1, ..., σ5 being, respectively,

3.81, 3.58, 3.09, 2.98, 2.75. Then, we defined the matrix

A = V diag(σ1, ..., σ5, γσ5, 0, ..., 0)U>. (42)

We added Gaussian noise of mean 0 and variance ε2 to each element of A independently and estimated its rank

with rmax = 6. Fig. 1 plots the ratio of the number of times the rank was estimated to be 5 over 200 trials for each

γ. We used the reference length L = 1. Fig. 1(a) shows the case where ε is known; Fig. 1(b) shows the case where

it is estimated.

2An r-dimensional subspace of Rn is specified by r points in Rn, but the r points can move freely within that subspace. So, the
degree of freedom is rn− r2.
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Figure 2: Fitting a line, a circle, and an ellipse.

The geometric AIC predicts the rank to be 6 with some probability even when the true rank is 5 (γ = 0). It

predicts the rank to be definitely 6 even for a small value of γ. The geometric MDL almost always guesses the

rank to be 5 when the true rank is 5 (γ = 0), but it keeps guessing the rank to be 5 for a wide range of γ for which

the true rank is 6.

6.2 Detection of Circles and Lines

Consider an ellipse that is tangent to the x-axis at the origin O with radius 50 in the y direction and eccentricity

1/β. On it, we take eleven points that have equally spaced x coordinates. Adding random Gaussian noise of mean

0 and variance ε2 to the x and y coordinates of each point independently, we fit an ellipse, a circle, and a line in a

statistically optimal manner by a technique called renormalization [8, 16, 17]. Fig. 2 shows one instance for β =

2.5 and ε = 0.1. Note that a line and a circle are both special cases (degeneracies) of an ellipse.

Lines, circles, and ellipses define one-dimensional (geometric) models with 2, 3, and 5 degrees of freedom,

respectively. Hence, their geometric AIC and the geometric MDL for N points are given as follows:

G-AICl = Ĵl + 2(N + 2)ε2, G-MDLl = Ĵl − (N + 2)ε2 log
( ε

L

)2
,

G-AICc = Ĵc + 2(N + 3)ε2, G-MDLc = Ĵc − (N + 3)ε2 log
( ε

L

)2
,

G-AICe = Ĵe + 2(N + 5)ε2, G-MDLe = Ĵe − (N + 5)ε2 log
( ε

L

)2
. (43)

The subscripts l, c, and e refer to lines, circles, and ellipses, respectively. For each β, we compute the geometric

AIC and the geometric MDL of the fitted line, circle, and ellipse and choose the one that has the smallest geometric

AIC or the smallest geometric MDL. We used the reference length L = 1.

Fig. 3(a) shows the percentage of choosing a line for ε = 0.01 after 1000 independent trials for each β in the

neighborhood of β = 0. If there were no noise, it should be 0% for β 6= 0 and 100% for β = 0. In the presence of

noise, the geometric AIC gives a sharp peak, indicating a high capability of distinguishing a line from an ellipse.

However, it judges a line to be an ellipse with some probability. The geometric MDL judges a line to be a line

almost 100% for small noise but judges an ellipse to be a line over a wide range of β.

In Fig. 3(a), we used the true value of the noise variance ε2. If it is unknown, it can be estimated from the

residual of the general ellipse model. Fig. 3(b) shows the result using its estimate. Although the sharpness is

somewhat lost, we observe similar performance characteristics of the geometric AIC and the geometric MDL.

Fig. 4 shows the percentage of choosing a circle for ε = 0.01 in the neighborhood of β = 1. If there were no

noise, it should be 0% for β 6= 1 and 100% for β = 1. In the presence of noise, as we see, it is difficult to distinguish

a small circular arc from a small elliptic arc for β < 1. Yet, the geometric AIC can detect a circle very sharply,
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Figure 3: The ratio (%) of detecting a line by the geometric AIC (solid lines) and the geometric MDL (dashed lines) using
(a) the true noise level and (b) the estimated noise level.
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Figure 4: The ratio (%) of detecting a circle by the geometric AIC (solid lines) and the geometric MDL (dashed lines)
using (a) the true noise level and (b) the estimated noise level.

although it judges a circle to be an ellipse with some probability. In contrast, the geometric MDL almost always

judges an ellipse to be a circle for β < 1.1.

6.3 Detection of Space Lines

We randomly take eleven points in a rectangular region [0, 10]× [−1, 1] in the xy plane and enlarge them A times

in the y direction. Adding random Gaussian noise of mean 0 and variance ε2 to the x, y, and z coordinates of

each point independently, we fit a line and a plane in a statistically optimal manner (see [8] for the details of the

computation). Note that a space line is a degeneracy of a plane.

A space line is a one-dimensional model with four degrees of freedom; a plane is a two-dimensional model with

three degrees of freedom. Hence, their geometric AIC and geometric MDL have the following form:

G-AICl = Ĵl + 2(N + 4)ε2, G-MDLl = Ĵl − (N + 4)ε2 log
( ε

L

)2
,

G-AICp = Ĵp + 2(2N + 3)ε2, G-MDLp = Ĵp − (2N + 3)ε2 log
( ε

L

)2
. (44)

The subscripts l and p refer to lines and planes, respectively. For each A, we compare the geometric AIC and the

geometric MDL of the fitted line and plane and choose the one that has the smaller geometric AIC or the smallest

geometric MDL. We used the reference length L = 1.

Fig. 5(a) shows the percentage of choosing a line for ε = 0.01 after 1000 independent trials for each A in the

neighborhood of A = 0. If there were no noise, it should be 0% for A 6= 0 and 100% for A = 0. In the presence of

noise, the geometric AIC has a high capability of distinguishing a line from a plane but judges a line to be a plane

with some probability. In contrast, the geometric MDL judges a line to be a line almost 100% for small noise but

judges a plane to be a line over a wide range of A.

In Fig. 5(a), we used the true value of the noise variance ε2. Fig. 5(b) shows the corresponding result using

its estimate obtained from the general plane model. We observe somewhat degraded but similar performance

characteristics.
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Figure 5: The rate (%) of detecting a space line by the geometric AIC (solid lines) and the geometric MDL (dashed lines)
with (a) the true noise level and (b) the estimated noise level.

6.4 Virtual Studio

We now consider a more realistic application: we do virtual studio experiments, taking images of moving objects

such as persons by a moving camera and superimposing them in a graphics-generated background [6, 27, 32].

In order to generate a background image that is compatible to the moving viewpoint, we need to compute, at

each frame in real time, the position and zooming of the camera, which can arbitrarily change in the course of the

shooting. A typical technique for this is to place a grid pattern colored in light and dark blue behind the object

and separate the object image from the pattern image by a chromakey technique. With the true geometry of the

grid pattern known, the position and the focal length of the camera can be determined if four or more grid points

are detected in the grid pattern image [22, 27, 31]. However, the following two problems must be resolved:

1. When the camera optical axis is perpendicular to the pattern, the 3-D position and focal length of the camera

are indeterminate because zooming out and moving the camera forward cause the same visual effect.

2. Some unoccluded grid points become occluded while some occluded points become unoccluded as the object

moves in the scene. As a result, the computed camera position fluctuates even if the camera is stationary or

moving very slowly.

These problems, often dealt with by ad hoc measures in the past, can be resolved by model selection: we model

various modes of camera motion and zooming that are likely to occur and choose at each frame the most appropriate

one by model selection [22].

We simulate a camera motion in a plane perpendicular to a 3 × 3 grid pattern. In the course of its motion,

the camera is rotated so that the center of the pattern is always fixed at the center of the image frame. First, the

camera moves along a circular trajectory as shown in Fig. 6(a). It perpendicularly faces the pattern at frame 13

and stops at frame 20. The camera stays there for five frames (frames 20 ∼ 24) and then recedes backward for

another five frames (frames 25 ∼ 30).

Adding random Gaussian noise of mean 0 and standard deviation 1 (pixel) to each coordinate of the grid

points independently at each frame, we computed the focal length and the trajectory of the camera (Figs. 6(b)

and 6(c)). Here, we used the following models (we used the reference length L = 600; see [22] for the details of the

computation):

• The camera is stationary with fixed zooming.

• The camera rotates with fixed zooming.

• The camera linearly moves with fixed zooming.

• The camera moves arbitrarily with fixed zooming.

• The camera moves arbitrarily with linearly changing zooming.

• Everything changes.
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Figure 6: (a) Simulated camera motion. (b) Estimated focal lengths. (c) Estimated camera trajectory. (d) Magnification
of the portion of (c) for frames 20 ∼ 24. In (b)∼(d), the solid lines are for model selection by the geometric AIC; the
thick dashed lines are for model selection by the geometric MDL; the thin dotted lines are for estimation without model
selection.

Degeneracy is detected at frames 12 and 13. In order to emphasize the fact that the frame-wise estimation fails,

we let f be ∞ and the camera position be at the center of the grid pattern in Figs. 6(b) and 6(c) when degeneracy

is detected.

As we can see, both the geometric AIC and the geometric MDL produce a smoother trajectory than frame-

wise estimation: the computed trajectory smoothly passes through the degenerate configuration. Fig. 6(d) is a

magnification of the portion for frames 20 ∼ 24 in Fig. 6(c). As we can see, statistical fluctuations exist when

the camera position is estimated at each frame independently. We observe that the fluctuations are suppressed by

model selection.

Fig. 7 shows five sampled frames from a real image sequence. Unoccluded grid points in the image were matched

to their true positions in the pattern by observing the cross ratio of adjacent points. This pattern is so designed

that the cross ratio is different everywhere in such a way that matching can be done in a statistically optimal way

in the presence of image noise [23].

Fig. 8 shows the estimated focal lengths and the estimated camera trajectory viewed from above. Degeneracy

was detected in the 15th frame, and the frame-wise estimation failed thereafter. We can observe that the geometric

MDL tends to select a simpler model and define a more rigid trajectory than the geometric AIC, which tends select

a general model and define a more flexible trajectory.

6.5 Observations

From the experiments we have done, we can observe that the geometric AIC has a higher capability for distinguishing

degeneracy than the geometric MDL, but the general model is chosen with some probability when the true model is
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Figure 7: Sampled frames from a real image sequence.
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Figure 8: (a) Estimated focal lengths. (b) Estimated camera trajectory. In (a) and (b), the solid lines are for model
selection by the geometric AIC; the thick dashed lines are for model selection by the geometric MDL; the thin dotted lines
are for estimation without model selection.

degenerate. In contrast, the percentage for the geometric MDL to detect degeneracy when the true model is really

degenerate approaches 100% as the noise decreases. This is exactly the dual statement to the well known fact,

called the consistency of the MDL, that the percentage for Rissanen’s MDL to identify the true model converges

to 100% in the limit of an infinite number of observations. Rissanen’s MDL is regarded by many as superior to

Akaike’s AIC because the latter lacks this property.

At the cost of this consistency, however, the geometric MDL regards a wide range of non-degenerate models

as degenerate. This is natural, since the penalty for one degree of freedom is heavier in the geometric MDL than

in the geometric AIC (see. eqs. (14) and (35)). Thus, the geometric AIC is more faithful to the data than the

geometric MDL, which is more likely to choose a degenerate model.

In the virtual studio example using real images, the estimation by the geometric MDL appears more consistent

with the actual camera motion than the geometric AIC. But this is because we fixed the zooming and moved the

camera smoothly. If we added variations to the zooming and the camera motion, the geometric MDL would still

prefer a smooth motion. So, we cannot say which solution should be closer to the the true solution; it depends on

what kind of solution we expect is desirable for the application in question.

7. CONCLUDING REMARKS

In this paper, we formulated geometric fitting as constraint satisfaction of geometric data in the presence of noise,

taking the noise level as the asymptotic variable, in contrast to statistical inference whose aim is to give a good

description of random phenomena in terms of deterministic mechanisms and random noise with the number of

observations taken as the asymptotic variable. Then, we gave a new definition of the geometric AIC and the

geometric MDL as counterparts of Akaike’s AIC and Rissanen’s MDL. We discussed various problems in using

them in practical situations. Finally, we showed, doing experiments using synthetic and real images, that the

geometric MDL does not necessarily outperform the geometric AIC and that the two criteria have very different

characteristics.

If we take in geometric fitting the number N of data {xα} as the asymptotic variable, the number of unknown
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parameters {x̄α} (true values of the data) increases as N increases. In other words, if we add one datum xN+1,

we have a new problem with a new set of unknowns, whose instance we observe once. As a result, the asymptotic

behavior of estimation in the limit N → ∞ becomes very anomalous. For this reason, {x̄α} are often called the

nuisance parameters . One way to avoid such an anomaly is to view {x̄α} as “random samples” from a yet unknown

distribution and regard, instead of {x̄α} themselves, the (hyper)parameters of that distribution as the unknowns

to be estimated. Such a description is called a semiparametric model [2].

Such an approach is effective for dealing with problems where one can observe, at least in principle, as many

data as possible, a typical situation being time series analysis. For example, the problem of estimating the number

of signal sources from time series data can be reduced to estimating the rank of a matrix determined from the

time series, and one can use Akaike’s AIC or Rissanen’s MDL for that purpose [39]. In such a problem, the goal

is to estimate something with maximum accuracy using a minimum number of data. In many computer vision

problems, in contrast, the goal is to estimate something with maximum accuracy using devices with minimum

resolution. The theory in this paper is intended to such applications as illustrated in the examples we have given.
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